

PRE-VISIT PREPARATION

MOON BASE + THE NEXT STEP

Moon Base: The Next Step is a dramatic immersive experience that explores the challenges, dangers and rewards of building a permanent base on the Moon.

CONTEXT OVERVIEW:

The US-led Artemis missions are the first step towards establishing an international, crewed Moon base. Over the coming years, there will be a lot of exciting news as these missions take place and new technologies are unveiled. The film looks a step beyond this immediate future to consider what is necessary to build a permanently inhabited base.

This vision of the future is created with consideration of current plans by the US and its international partners. The film shows technologies that are currently in development, or which have been proposed as realistic solutions to the challenges raised by the Moon environment.

The film focuses on challenges particular to the Moon. This unusual environment requires new solutions beyond those used by astronauts in the International Space Station.

Spacecraft take time and a lot of fuel to get the Moon. It's expensive to carry equipment there.

Astronauts so far from Earth will be exposed to dangerous space radiation unless this is blocked by shields.

Solar energy is a fantastically important resource and will power future Moon bases.

Robots will play a major role. Semi-autonomous robots will use artificial intelligence.

Moon dust/rock (regolith) is a serious hazard to both robots and humans. But it is also a valuable local resource that can be used for building structures.

Water. Mining Moon water is extremely difficult, but also very important as it allows local production of rocket fuel.

Economic potential (of fuel production and mining of rare minerals) is an important factor in the recent decision to develop a Moon base.

The future is unknown - but taking this next step will unlock some amazing possibilities.

PRIOR
 KNOWLEDGE:

Some background information about the Moon and previous astronaut activity would be helpful. If pupils can cover this content a little while before their visit, it will give them a head start in understanding the story.

About the Moon:

- Location: it's really far away!

Use the provided activity 'How Far is the Moon' to create a scale model of the Earth/Moon system

- Craters: the Moon has craters from where large space rocks have smashed into it. Photographs of the Moon show shadowing in these craters depending on the angle of the Sun.
- Surface: the Moon has a grey, rocky/dusty and barren surface.
- Studies: we have studied the Moon with telescopes, robotic landers, many uncrewed orbiters, and during the Apollo Missions.

About astronaut activities:

- The Apollo missions: people have orbited and walked on the Moon, but it was a long time ago. The Apollo missions were all relatively short (under 2 weeks including travel time).
- The International Space Station (ISS): since 2000, we have used the ISS to learn how to safely live and work in space. The ISS is very close to Earth [in Low Earth Orbit]. Individual astronauts have visited the ISS for many months at a time.
- No human has travelled further than the Moon. No human has ever visited another planet. Between the Apollo missions and Artemis, nobody [has] travelled further than Low Earth Orbit.

Vocabulary:

Specialist vocabulary used without explanation (starred words are important for understanding):

- Artificial Intelligence
- Orbit *
- Crater *
- Mineral

New vocabulary that is introduced/explained
-Regolith

- Habitation/Hab

| | Links to additional resources about the Moon |
| :--- | :--- | :--- | :--- |

MOON BASE + THE NEXT STEP

POST-VISIT
 ACTIVITIES

After watching the film, it is useful to refer back to the experince in order to practice retrieval of concepts and help solidify memory.This is ideally done at least one day and up to a week after watching the film.

A pack of images from the film is provided, to help spark memory and encourage discussion.

MAJOR THEMES IN THE FILM

Spacecraft take time and a lot of fuel to get the Moon. It's expensive to carry equipment there.

Astronauts so far from Earth will be exposed to dangerous space radiation unless this is blocked by shields.

Solar energy is a fantastically important resource and will power future Moon bases.

Robots will play a major role. Semi-autonomous robots will use artificial intelligence.

Moon dust/rock (regolith) is a serious hazard to both robots and humans. But it is also a valuable local resource that can be used for building structures.

Water. Mining Moon water is extremely difficult, but also very important as it allows local production of rocket fuel.

Economic potential (of fuel production and mining of rare minerals) is an important factor in the recent decision to develop a Moon base.

The future is unknown - but taking this next step will unlock some amazing possibilities.

PROVIDED ACTIVITIES

This pack includes two activities that are designed to give purpose to retrieving knowledge about the Moon and practicing use of vocabulary. Recalling prior knowledge to complete useful tasks is a great way to embed it in long-term memory.

Letter to Earth - a writing activity from an imagined perspective of the student as a Moon immigrant. Creating personal links to information is another way to aid long-term memory.

Moon Business - an activity where children assess the likelihood of different lunar business proposals succeeding. Requires them to repetitively recall prior knowledge about the lunar environment to complete the task.

How Far is the Moon? - an activity where children use a fun finger-trick and some simple maths to create a scale model of the Earth/Moon system.

EQUIPMENT (PART II)

VOCABULARY

PRE-ACTIVITY (OPTIONAL):

PRIOR KNOWLEDGE

The Moon must be about a quarter the diameter of Earth. Ideal sizes are $8 \mathrm{~cm} / 2 \mathrm{~cm}$. The Moon must not be smaller than 1.5 cm diameter. Eg: slowpitch softball and marble; polystyrene balls; ball-pit ball and wooden bead. Flat circles cut from stiff card could also be used.

Tape-measure or other measuring tool (one for each group):
If using a $8 \mathrm{~cm} / 2 \mathrm{~cm}$ scale model, measurements may be up to 2 metres. If using basketball/tennis-ball, it could be up to 8 metres! Do not use a retracting tape measure due to the risk of this retracting while being held near the Earth-holder's eye.

Enough space for the children to create/measure their scale models.

Calculators (one for each group).

A general awareness of the Moon in the sky and as a sphere in space. An understanding of the concept of a scale model.

Confidence to use a calculator to add and divide numbers.

Scale model; represent; diameter; measure; cm; km; average; calculate; conversion factor.

Find a date when when the Moon is between first quarter and full, for instance by using the website tool at
www.timeanddate.com/moon/phases/
When full, the Moon will rise at sunset and set at sunrise - this means it may be difficult for children to observe in mid-summer. A first quarter Moon (lit from the right) rises around midday.

Stargazing astronomers often use their hand/fingers at arm's length to help them measure angles across the sky. The children will use this technique to measure the Moon.

Direct the children to put one hand over an eye, and compare the size of different projected images (or objects in the classroom) with their hand/fingers. Check that they understand the principle.

Ask them to look out for the Moon, and if they see it they can measure it with their fingers/hand and report back.

They will likely be surprised by the result, as there is an optical illusion (the Moon illusion) that makes the Moon appear larger to us than it really is.

ACTIVITY STRUCTURE:

Introduce the activity:

- We are going to be thinking about how big the Moon looks in the sky, and work out how far away it must be to look like that.
- You will be using scale models of Earth and Moon. (Explain/recap the concept of a scale model as required.)
- You will be working in groups of three people (extras can form groups of four).
- As a class, discuss seeing the Moon in the sky. Try to remember how big it looks. Show how in photographs it often looks ridiculously huge because of the way they zoom in on it.

How big is it really in the sky?

- Little finger trick: everyone show me your little finger. Now stretch your arm out in front of you, holding your little finger as far away as you can. Put your spare hand over one eye. Now look at your little finger. Its tip will look the same size as the Moon does in the sky.
(If they haven't been able to observe the Moon in this way themselves, they will be very surprised and perhaps dubious that this is true - this is why it's best if at least some of the group can do so in advance.)

The little-finger trick works just as well with a scale model as it does with the real Earth and Moon. If you look from a scale-model Earth, then your little finger will just cover the scale-model Moon when it is at the correct scale-model distance.

INTRODUCE
 THE ACTIVITY

- Each group will be given a scale-model Earth and Moon. The model Moon is about a quarter the width of the model Earth,
- You will use the little finger trick to work out roughly how far apart these should be your scale model.
- We will then work it out using the real distance to see how close you were and how well the finger-tricked worked.
- Demonstrate the measuring activity by directing some children to model the activity (see activity details below) using a different object.
- Hand out model Earth/Moon models and worksheets.
- Using part one of the worksheet to structure the activity, children view their scale-model Moon from the location of their scale-model Earth.

How far is the Moon?

Part one

Our model Earth has a diameter of cm

Our model Moon has a diameter of \qquad cm

Take turns to hold the Earth by your eye. How far away is it when it looks the size of your little finger tip?

1. Name
Distance
cm
2. Name
Distance
cm
3. Name \qquad Distance \qquad cm
4. Name \qquadDistance
\qquad cm

Adding all our measured distances together gives a total of cm

Calculate our group average by dividing our total distance by the number of measurements:

Part two

The average distance for the whole class was cm

The real Moon has a diameter of $3,475 \mathrm{~km}$
$3,475 \mathrm{~km} \div$ our model's diameter in $\mathrm{cm}=$ \qquad $\mathrm{km} / \mathrm{cm}$

This is our conversion factor. Every cm in our model represents this many km in real life.
If the finger trick works:
the real Moon's distance (in km) would be

The real Moon's average distance as measured by scientists is: km

So the distance in the model should be
$\underset{\substack{\text { real distance }}}{\ldots \ldots . . \mathrm{km}} \div \underset{\substack{\text { conversion factor }}}{\ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{cm}}$

MISSION 02 + LETTER TO EARTH

TITLE OF ACTIVITY
TYPE OF ACTIVITY
SUGGESTED AGE

Letter to Earth
Plan and write an informal letter from an imagined viewpoint
$8-12$ years

MロロNBASE

the next step

ACTIVITY OUTLINE

LEARNING OBJECTIVES

EQUIPMENT

Plan and write a letter from the Moon to Earth describing what it's like to live on the Moon.

Retrieve and use prior knowledge of the lunar environment.
Practice use of vocabulary relating to the lunar environment.
Create an individualised imagined scenario about life on the Moon, to aid future recall of concepts.

Sticky notes (may be substituted with paper).
Printed vocabulary sheets (optional).
Writing materials (paper/pen or computer).

```
PRIOR
KNOWLEDGE
```


VOCABULARY

ACTIVITY STRUCTURE:

The Moon is far from Earth, has low gravity, no air to breathe, and experiences temperature extremes. It has a barren, cratered landscape covered in rocky dust. It is exposed to dangerous space radiation.

Prior experience of seeing images of an imagined Moon base. A base needs to provide air and environmental protection to the astronauts.

Lunar; regolith (loose rock/dust on the Moon's surface); gravity; atmosphere; insulation; radiation, crater; vacuum, habitat.

Introduce the activity.

- Show image(s) of artists impressions of what crewed Moon bases might look like.
- Explain they will be imagining that they have recently moved to live on the Moon.
- They will be writing a letter back to a friend or family member on Earth, explaining how life on the Moon is different from on Earth.
- The person they are writing to does not know what the Moon is like, so they will need to explain everything.
- The letter is from them (not from an imagined character).
- They can make up anything they like about their life on the Moon, so long as the science information about the Moon environment is correct.
- As a group: discuss ideas for the types of information that might be appropriate to include in such a letter. During this discussion, recall the Moon environment and previously learned specialist vocabulary.
Create a list of topic ideas, and also a word list that they can
use during the activity (or use the vocabulary sheets provided).
Suggested topics might be related to:

Letter to Earth

Moon Vocabulary

Here are some useful words you might like to use when writing about the Moon.

Useful nouns
 Interesting adjectives

Launch pad
Lunar
Spacecraft
Lander
Habitation
Air lock
Moon buggy
Empty, barren, lifeless, desolate
Sharp, spiky, glassy, jagged
Dusty, rocky, dry, arid
Crater
Mountain
Wilderness
Regolith
Micrometeorite
Shadow, dark, pitch black
Freezing, chilly, sub-zero, cold, hot,
Boiling, sweaty, scorching
Gravity
Dangerous, risky, deadly, perilous
Claustrophobic, cramped
Scary, frightening, terrifying
Boring, repetitive, dull, tedious
Distant, far, lonely, isolated
Vacuum
Pressurised
Oxygen
Exciting, fun, entertaining, enjoyable
Fantastic, wonderful, awesome
Temperature Insulation

Radiation
Shielding

Surprising, unexpected, shocking, amazing, confusing, strange,weird, bizarre

MISSION 03 + MOONBUSINESS

TITLE OF ACTIVITY	Moon Business
TYPE OF ACTIVITY	Paired discussions / report back to group
SUGGESTED AGE	$8-12$ years

the next step

ACTIVITY

 OUTLINE
LEARNING OBJECTIVES

EQUIPMENT

Discuss how the lunar environment would affect proposed business activities at a Moon Base.

Retrieve and use knowledge of the environment on the Moon.
Practice use of vocabulary relating to the lunar environment. Appreciate that the Moon is a potential base for economic activity.

Video projection.
Printed work sheets, pen/pencil.

PRIOR KNOWLEDGE

VOCABULARY

ACTIVITY STRUCTURE:

The Moon is far from Earth, has low gravity, no air to breathe, and experiences temperature extremes. It has a barren, cratered landscape covered in rocky dust. It is also exposed to dangerous space radiation.

Regolith; gravity; atmosphere; insulation; crater; vacuum.

- Introduction: explain they will be thinking about how the Moon's environment would affect businesses hoping to set up at a Moonbase. They will first discuss as a group what the environment is like, then work in pairs to consider how these would affect the proposed businesses.
- Starting activity: watch a short video of Apollo astronauts on the Moon, during which they should observe as many things as possible about the Moon environment. Explain that by 'environment' you mean what the surroundings are like. Give an example using the room you are in (eg it might be warm, dry, and bright, with flat walls/floor and humid, breathable air).

Video (3 min 12 s , gives temperature in ${ }^{\circ} \mathrm{F}$):
https://www.pbslearningmedia.org/resource/ess05.sci.ess. eiu. extemp/extreme-temperatures-on-the-moon/

- Allow a short time for them to share with their partner the things they spotted in the video.
- Group discussion about the repace with lunar environment. Start by asking what they spotted in the video, but expand beyond this as necessary to cover the topics on the teacher information sheet.

Objectives of discussion: Recall and activate prior knowledge. Practice using vocabulary. Correct misconceptions.

- Introduce the idea that a permanent Moonbase will create opportunities for businesses to set up operations on the Moon (as shown in the planetarium film). As transport becomes cheaper and technologies improve, more opportunities will arise.
- Explain the activity: they will look at proposed business ideas and consider how factors including the Moon environment would affect these.
- Why is being on the Moon a good idea for this business?
-Why is being on the Moon difficult for this business?
- What will they need (eg new/specialist technologies) to make their business work?

| | - Do they think this type of business should consider setting up
 on the Moon? |
| :--- | :--- | :--- | :--- |
| - Go through a worked example to show them what a completed | |
| worksheet might look like. | |

Environmental factor observed in video

1. Big, open, barren landscape
2. Dry, dusty ground

Notes

It looks like a desert on Earth.
No forests, rivers, oceans, houses.

The dust clings to their spacesuits. It is sharp, toxic dust and they have to be careful not to breathe it in when they take the spacesuit off.

The proper word for loose rocks and dust on the surface of the Moon is "regolith". Do we have regolith on Earth too? Yes - but we call it things like soil, sand and ash.

It's not uncommon to see lunar regolith called "soil", but this isn't really right. Proper soil contains organic matter (decomposing leaves, worms etc).

The Moon looks very dry although there are ice particles hiding among the dust. Bigger deposits of ice are present in permanently-shadowed craters.
3. Less gravity than on Earth

Yes there is still gravity: when they jump up astronauts come back down again.

All planets and Moons* have their own gravity. Massive things have more gravity than small, light things. Our Moon is smaller than Earth (1/4 the width) so has less gravity than Earth (1/6 the gravity).

The astronauts can lift large rocks and jump high.
Their spaceship doesn't need a big rocket to take off again.

Spacesuits are heavy on Earth but weigh less on the Moon. It was easier for the Apollo astronauts to jump than walk as their spacesuits were not very flexible.

* everything has gravity, even you! But you are very small compared to the Earth or Moon, and so your gravity is far too weak to affect objects around you.

4. (Almost) no air
5. Bright sunlight and dark shadows

The Moon has so very little air that it would feel to us like being in a vacuum. (The gases in its very thin atmosphere are also very different from those on Earth.)

No blue sky, nor weather. The astronaut in the video says it's a lovely cloudless day - why is this a joke? (There are no clouds on the Moon.)

They have to wear spacesuits to provide air to breathe.

On Earth, our atmosphere scatters sunlight in all directions. This scattered light partly lights up our shadows. On the Moon there is no air, so this doesn't happen, and so the shadows are much darker.

On the Moon, sunlight is strong/bright because it hasn't been filtered through an atmosphere.

The rock in the video is very cold on one side.
The shadows are completely dark so don't receive any warmth at all from the Sun.

The Moon spins very slowly and so it has very long days and nights. Shadows move more slowly than on Earth. This gives more time for things to heat up or cool down.

On Earth, air carries heat from warmer to cooler areas. On the Moon, there is no air to do this.

ADDITIONAL FACTORS

 ABOUT THE MOON7. Very far from Earth

It takes about three or four days to get there.
8. Space radiation (this factor is less important for this activity)

9. Generally, it is dangerous!

Earth has a magnetic field that protects us from harmful radiation coming from the Sun and from deep space.

Usually it's not too dangerous. The Apollo astronauts had little protection but their missions were under two weeks long so they didn't worry too much about this.

But - rarely, there are solar proton storms (the Sun does a big burp). These are much more dangerous. The Apollo astronauts were lucky the Sun was quiet while they were outside the Earth's magnetic field; a solar storm would have made them very unwell. (A storm did happen in 1972, between Apollo 16 and 17.)

The astronauts have to wear complex spacesuits to protect them from the vacuum, temperature and toxic dust.

The spacesuits take a long time to put on and take off. They wear them for a long time. So the suits must allow them to communicate with each other, to drink water and urinate.

Example

Business idea: School
Description: It's a normal school, but on the Moon.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon dust (regolith)				
Weaker gravity				
than Earth			\quad	Far from Earth
:---				

Example (completed)

Business idea: School
Description: It's a normal school, but on the Moon.

Record your thoughts:
$\left.\left.\begin{array}{|c|l|l|}\hline \text { Factor } & \text { Better than Earth because ... } & \text { But difficult because ... } \\ \hline \begin{array}{c}\text { Barren } \\ \text { landscape }\end{array} & \begin{array}{l}\text { Lots of space for a playground. } \\ \text { Nothing distracting outside }\end{array} & \begin{array}{l}\text { Nowhere for outdoor } \\ \text { nature activities }\end{array} \\ \hline \text { No air or weather } & \begin{array}{l}\text { No wet coats. } \\ \text { No snow days. }\end{array} & \begin{array}{l}\text { The school needs to be filled } \\ \text { with breathable air. }\end{array} \\ \hline \text { Sharp Moon } \\ \text { dust (regolith) }\end{array} \quad \begin{array}{l}\text { Great geology lessons! } \\ \text { if they go outside. }\end{array}\right] \begin{array}{l}\text { Need to carefully clean } \\ \text { spacesuits after time outside. }\end{array}\right\}$

Business idea: Moon Buggy Adventure

Description: Fun group activity for visitors to the Moon. They ride Moon Buggies away from the base to visit interesting craters. They can race each other, do skids and jumps.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon				
dust (regolith)			\quad	Weaker gravity
:---				
than Earth	\quad	Far from Earth		
:---				
Far				

Business idea: Astronomy School
Description: Short courses where you learn about things you can see in the sky using your eyes, binoculars, and telescopes.

Record your thoughts:

Business idea: Mining rare minerals
Description: Extracting rare minerals from regolith, for use in high-tech technologies back on Earth. Many tons of regolith must be processed by robots to extract a small amount of these rare minerals.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...
Barren landscape		
No air or weather		
Sharp Moon dust (regolith)		
Weaker gravity than Earth		
Far from Earth		

Business idea: Growing Moon Fruit for sale on Earth.
Description: Grow fruit on the Moon, then sell them on Earth. People will pay extra because they're rare.

Record your thoughts:

Business idea: Physiotherapy centre
Description: A place for people with injuries to come to recover. Especially to build up weak muscles.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon				
dust (regolith)			\quad	Weaker gravity
:---				
than Earth	\quad	Far from Earth		
:---				
Far				

Business idea: Flying lessons
Description: Full-week course to earn your Lunar Pilots Licence. Includes learning to use a jet-pack, and also how to fly a helicopter.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon				
dust (regolith)			\quad	Weaker gravity
:---				
than Earth	\quad	Far from Earth		
:---				
Far				

Business idea: Horse-racing events
Description: Professional long-distance horse racing across the lunar surface.
The events are televised for viewers back on Earth.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon				
dust (regolith)			\quad	Weaker gravity
:---				
than Earth	\quad	Far from Earth		
:---				
Far				

Business idea: Moon Beach holiday hotel
Description: Hotel with grounds set out in holiday style. Enjoy the beach umbrellas, deckchairs, barbecue and ice-cream stalls with balloons. Come for a romantic break, sipping your drink as you watch the Earthset.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...
Barren landscape		
No air or weather		
Sharp Moon dust (regolith)		
Weaker gravity than Earth		
Far from Earth		

Business idea: Tractor assembly plant
Description: Large solar-powered factories where robots move heavy tractor parts into position to assemble them into finished vehicles.

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon				
dust (regolith)			\quad	Weaker gravity
:---				
than Earth	\quad	Far from Earth		
:---				
Far				

Business idea: Spacecraft test facility
Description: A place to test new spacecraft before they are launched from Earth

Record your thoughts:

Factor	Better than Earth because ...	But difficult because ...		
Barren landscape				
No air or weather				
Sharp Moon				
dust (regolith)			\quad	Weaker gravity
:---				
than Earth	\quad	Far from Earth		
:---				
Far				

